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Abstract

Numerous notations, methodologies, and tools exist to support software system modeling. While individual models help to

clarify certain system aspects, the large number and heterogeneity of models may ultimately hamper the ability of stakeholders to

communicate about a system. A major reason for this is the discontinuity of information across different models. In this paper, we

present an approach for dealing with that discontinuity. We introduce a set of ‘‘connectors’’ to bridge models, both within and

across the ‘‘upstream’’ activities in the software development lifecycle (specifically, requirements, architecture, and design). While

the details of these connectors are dependent upon the source and destination models, they share a number of underlying char-

acteristics. These characteristics can be used as a starting point in providing a general understanding of software model connectors.

We illustrate our approach by applying it to a system we have designed and implemented in collaboration with a third-party or-

ganization.
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1. Introduction

Software engineering researchers and practitioners

have developed a plethora of models that focus on dif-
ferent aspects of a software system. These models fall into

five general categories: domain, success, process, product,

and property models. Numerous notations, methodolo-

gies, and tools exist to support models in each category.

For example, within the last decade, the heightened in-

terest in software architectures has resulted in several

product and property models based on architecture de-

scription languages (ADLs), architectural styles, and
their supporting toolsets (Medvidovic and Taylor, 2000;

Perry and Wolf, 1992; Shaw and Garlan, 1996).

Models are an indispensable tool in software devel-

opment. They help developers curb system complexity;

they also help the many stakeholders in a project convey

their concerns to other stakeholders in a manner that is
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understandable and that will ensure the proper treat-

ment of those concerns. However, the preponderance of

models actually renders the ultimate goal of develop-

ment––implementing dependable software––more diffi-
cult in many ways. The reason for this is the

discontinuity of information across different models. For

example, a system�s requirements might be described

using use-case scenarios and entity-relationship dia-

grams, while its design may be captured in class, object,

collaboration, and activity diagrams. The problem,

then, is twofold:

1. ensuring the consistency of information across mod-

els describing the same artifact (e.g., a class instance

in object and collaboration diagrams in a design), and

2. ensuring the consistency of information across mod-

els describing different artifacts (e.g., use-cases in a

system�s requirements and classes in its design).

In both cases, each model provides (different) infor-
mation in different ways, making it very difficult to es-

tablish any properties of the modeled phenomena as a

whole.
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In principle, this discontinuity among models can be

dealt with by employing synthesis and analysis. Synthe-

sis enables one to generate a new model (e.g., collabo-

ration diagram) from an existing model (e.g., class

diagram), while analysis provides mechanisms for en-

suring the preservation of certain properties across (in-
dependently created) models. Software engineers

extensively employ both kinds of techniques. For ex-

ample, program compilation involves both the analysis

of the syntactic and semantic correctness of one model

(source code) and the synthesis of another model from it

(executable image).

Synthesis and analysis techniques span a spectrum

from manual to fully automated. Manual techniques tend
to be error prone, while fully automated techniques are

often infeasible (Partsch and Steinbruggen, 1983). Fur-

thermore, in some cases one technique (e.g., analysis) is

easier to perform than another (synthesis). For this rea-

son, one typically must resort to using some combination

of synthesis and analysis techniques of varying degrees of

automation when ensuring inter-model consistency.

The focus of our previous work was on identifying
and classifying different categories of models and pro-

viding support for specific models within each category

(e.g., requirements models (Boehm et al., 1998), archi-

tecture models (Medvidovic et al., 1999), and design

models (Egyed and Medvidovic, 2000)). This paper dis-

cusses a set of techniques we have developed to bridge the

information gap created by such heterogeneous models.

In many ways, we view the problem of bridging het-
erogeneous models as similar to the one that has recently

generated much interest in the software architecture

community: a software architecture can be conceptual-

ized as a diagram consisting of ‘‘boxes,’’ representing

components, and ‘‘lines,’’ representing component rela-

tionships (i.e., connectors); while we may have a more

complete understanding of the components, many of the

critical properties of a software system are hidden within
its connectors (Mehta et al., 2000; Shaw, 1993). Similarly,

the individual models produced during a software sys-

tem�s lifecycle comprise the ‘‘lifecycle architecture’’

boxes; the properties of these individual models are typ-

ically well understood. Much more challenging is the

problem of understanding and providing the necessary

support for the lines between the boxes, i.e., the model

‘‘connectors.’’
The work described in this paper focuses on model

connectors traditionally associated with the ‘‘upstream’’

activities in the software lifecycle: requirements, archi-

tecture, and design. In particular, we have devised a set

of techniques for bridging

1. requirements and architecture models,

2. architecture and design models, and
3. different design models, both at the same level and

across levels of abstraction.
As this paper will demonstrate, each of the three cases

introduces its own issues and challenges. Moreover, for

practical reasons, our investigation to date has focused

on a limited number of models. Nevertheless, we have

been able to successfully develop and combine a set of

model connectors that allow us to start with a high-level
requirements negotiation and arrive at a low-level ap-

plication design in a principled manner. In the process,

we have developed a novel, light-weight technique for

transferring requirements into architectural decisions.

We have also introduced a model transformation

framework that supports multiple views of a system�s
design.

The results outlined above are specific to our ap-
proaches to requirements, architecture, and design

modeling. However, we have leveraged this experience,

along with existing literature on software model trans-

formations, to devise a set of shared principles we be-

lieve to be model-independent. In particular, we classify

the properties of model connectors and relationships

among individual elements of different models. We il-

lustrate these properties and relationships both via ex-
amples drawn from our work and from well-understood

software transformation techniques (e.g. compilation).

The remainder of the paper is organized as follows.

Section 2 introduces the notion and properties of model

connectors. Section 3 outlines the example application

we will use for illustration throughout the paper. Sec-

tions 4–6 briefly introduce the requirements, architec-

ture, and design modeling approaches we developed in
the past and used as the basis of this work, and then

provide in-depth discussions of the model connectors we

have developed for bridging them. Due to the scope of

our work and number of model connectors we have

developed, at times we are forced to omit some of the

techniques� details and convey their general flavor to the

reader instead. Section 7 revisits the general properties

of software model connectors we have identified and ties
them to the examples discussed throughout the paper. A

discussion of related work and conclusions round out

the paper. It is important to note that our approach does

not assume any particular lifecycle model (e.g., waterfall

or spiral) or software development process. The se-

quential ordering of lifecycle activities implied by the

paper�s organization (Sections 4–6 in particular) was

adopted for presentation purposes only.
2. Connecting the software lifecycle

When we speak of models, diagrams, or views, we

mean any form of graphical or textual depiction that

describes the software system itself and/or decisions

about the system made along the way. Models may be
described separately, but they are not independent of

one another. Models may be created individually and
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validated for syntactic and even semantic correctness

within a given context. However, models are interde-

pendent because they must somehow reflect the general

objectives of the software system under development.

Successful modeling thus requires more than generating

and validating individual models––it is also about en-
suring the consistency of all models with the general

objectives of the software system.

This paper discusses ways of bridging information

across models. Connectors between models satisfy two

primary goals:

1. they are able to transform model information (a form

of model synthesis) or
2. they are able to compare model information (a form

of model analysis).

In both cases, model connectors maintain consistency

by helping to transform or compare the information two

or more models have in common. When we talk about

model transformation and comparison in the context of

this work, we really mean ‘‘inter-model’’ transformation
and comparison, that is, transformation and compari-

son between separate models, diagrams, or views with

the primary goal of ensuring a common objective. Al-

though this paper discusses various instances of bridging

model information across the software lifecycle, we must

emphasize that the key contribution of this work is not

those instances, but rather their combined, collective

properties. The most generic property of a model con-
nector is that it re-interprets information. Re-interpre-

tation is a fundamental requirement for model

connectors in order to baseline the relationships between

models to overcome syntactic and semantic differences

between them.

This paper will show that model connectors can have

very unique implementations. However, we will also

show that there are some common ways of categorizing
their differences by using a set of properties. In partic-

ular, model connectors may be directional in that one

type of model can be transformed into another type of

model, but perhaps not vice versa; model connectors

may also only be partially automatable or reliable (i.e.,

‘‘trustworthy’’). We will discuss in this paper that some

of those properties apply to model connectors directly

whereas other properties apply to the modeling elements
they bridge. For instance, modeling elements belonging

to different models may complement or outright con-

tradict one another. Sometimes, one modeling element

may relate to exactly one element in another model (1-

to-1 mapping); or the mappings may be more complex

(i.e., many-to-many mappings). In creating and vali-

dating model connectors, one has to define and analyze

these properties. As an illustration of these properties,
the next section will introduce an example. The follow-

ing sections will then outline some connectors between
different models developed in the context of this exam-

ple. We will then revisit the general properties of model

connectors.
3. Example application

We use an example application to illustrate the con-

cepts introduced in this paper. The application is moti-

vated by the scenario we developed in the context of a

US Defense Advanced Research Project Agency

(DARPA) project demonstration and recently refined in

collaboration with a major US software development

organization. The scenario postulates a natural disaster
that results in extensive material destruction and casu-

alties. In response to the situation, an international

humanitarian relief effort is initiated, causing several

challenges from a software engineering perspective.

These challenges include efficient routing and delivery of

large amounts of material aid; wide distribution of

participating personnel, equipment, and infrastructure;

rapid response to changing circumstances in the field;
using existing software for tasks for which it was not

intended; and enabling the interoperation of numerous,

heterogeneous systems employed by the participating

countries.

We have performed a thorough requirements, archi-

tecture, and design modeling exercise to address these

concerns. We have also provided a partial implementa-

tion for the resulting system (referred to as ‘‘cargo
router’’). This implementation is an extension of the

logistics applications discussed in Medvidovic et al.

(1999).
4. Software requirements model connectors

4.1. Modeling software requirements

During requirements engineering, the needs, expec-

tations, constraints, and goals of a project�s stakeholders

have to be gathered, communicated, and negotiated to

achieve a mutually satisfactory solution. We have de-

veloped the WinWin approach for collaborative re-

quirements negotiation and successfully applied it in

over 100 real-client projects (Boehm et al., 1998; Boehm
et al., 2001). WinWin defines a model guiding the ne-

gotiation process: stakeholder objectives and goals are

expressed as win conditions; known constraints, prob-

lems, and conflicts among win conditions are captured as

issues; options describe possible alternative solutions to

overcome the issues; if a consensus is achieved among

stakeholders, agreements are created. We have re-

cently enhanced the WinWin approach and have used
a COTS groupware environment as its implemen-

tation substrate (GroupSystems, 2001). The result,
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‘‘EasyWinWin,’’ supports brainstorming, categoriza-

tion, and prioritization of win conditions, identification

and resolution of conflicts, as well as collaborative

characterization of application domain properties (Bo-

ehm et al., 2001; Gr€uunbacher and Briggs, 2001).

A team of stakeholders used EasyWinWin to gather,
negotiate, and elaborate requirements for the cargo

router system. In the first round of requirements nego-

tiation the team came up with 64 win conditions, which

provided a starting point for further negotiation and

architectural refinements. Fig. 1 shows a snapshot of the

EasyWinWin negotiation tool: WinWin artifacts are

organized in a tree and marked with artifact type and

stakeholder tags (top pane); a voting tool is used to aid
the transformation of software requirements into an

architecture, as discussed in Section 4.2.

4.2. Requirements-to-architecture model connector

The relationship between a set of requirements, such

as those produced by an EasyWinWin negotiation, and

an effective architecture for the desired system is not
readily obvious. Requirements largely describe the

problem to be solved (and constraints on its solution),

whereas architectures model a solution to the problem.

The terminology and concepts used to describe the two

also differ. For example, WinWin deals with win condi-

tions, issues, options, and agreements, while architectures
Fig. 1. EasyWinWin negotiation
deal with components, their interactions (i.e., software

connectors or buses), system topologies, and properties

(Shaw and Garlan, 1996). For these reasons, we have

investigated principled ways of relating requirements

and architecture models and defining a viable architec-

ture that addresses a given set of requirements. Unfor-
tunately, the large semantic gap between high-level,

sometimes ambiguous requirements artifacts and the

more specific architectural artifacts (e.g., modeled in a

formal ADL) often does not allow one to establish

meaningful links between them. This section proposes a

model connector that remedies the problem and facili-

tates the bridging of the two models.

We have developed the Component, Bus, System,
Property (CBSP) model connector that bridges re-

quirements and architectures. CBSP artifacts refine

WinWin�s artifacts into architectural decisions. CBSP is

a tool-aided, but highly human-intensive technique.

Software architects assess the win conditions for their

relevance to a system�s architecture: its components (i.e.,

processing and data elements (Perry and Wolf, 1992)),

buses (i.e., connectors; Shaw and Garlan, 1996), overall
configuration (i.e., the system itself or a particular sub-

system), and their properties (e.g., reliability, perfor-

mance, and cost). If it is deemed architecturally relevant,

a win condition is refined into one or more artifacts in

the CBSP model connector. Each CBSP artifact thus

explicates an architectural concern and represents an
tree and CBSP vote views.
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early architectural decision for the system. For example,

a win condition such as

W: The system should provide an interface to a Web

browser.

can be recast into a processing component CBSP

artifact

Cp: A Web browser should be used as a component in

the system.

and a bus CBSP artifact

B: A connector should be provided to ensure interoper-

ability with a third-party Web browser.

The CBSP dimensions include a set of general

architectural concerns that can be applied to systemat-

ically classify and refine requirements negotiation arti-

facts and to capture architectural tradeoff issues and
options. There are six possible CBSP dimensions. They

are discussed below and illustrated with examples drawn

from the cargo router system negotiation.

(1) C: artifacts that describe or involve a Component in

an architecture. For example, the win condition.

W12: Allow customizable reports, generated on the

fly.

is refined into CBSP artifacts describing both pro-

cessing ðCpÞ and data ðCdÞ components
Cp: Report generator component.

Cd: Data for report generation.

(2) B: artifacts that describe or imply a Bus. For exam-

ple

W30: The system should have interfaces to related

applications (vehicle management system, staff

availability).

can be refined into
B: Connector to staff and vehicle management sys-

tems.

(3) S: artifacts that describe System-wide features or

features pertinent to a large subset of the system�s
components and connectors. For example

W6: Capability to react to urgent cargo needs.

is refined into

S: The system should deploy automatic agents to

monitor and react to urgent cargo needs.

(4) CP: artifacts that describe or imply Component

Properties. For example

W44: Client UI should be accessible via a palm-top

or lap-top device.

is refined into

CP: The client UI component should be portable

and efficient to run on palm-top as well as lap-top

devices.

(5) BP: artifacts that describe or imply Bus Properties.

For example

W42: Integration of third-party components should

be enabled without shutting down the system.

is refined into
BP: Dynamic, robust connectors should be provided

to enable ‘‘on the fly’’ component addition and re-

moval.

(6) SP: artifacts that describe or imply System (or sub-

system) Properties. For example

W6: Operators must be promptly notified of subsys-

tem failures.

is refined into

SP: The system should support real-time communi-

cation and awareness.

During this process of refining requirements, a given

CBSP artifact may appear multiple times as a by-

product of different requirements. For example, in

the cargo router system requirements negotiation,
two win conditions

W1: Optimize concurrent routing to increase speed

of high-priority cargo delivery.

and

W3: Support for different types of cargo.

result in the identification of a cargo data compo-

nent (see Fig. 2). Such redundancies are identified

and eliminated by the CBSP model connector, re-
sulting in a minimal (intermediate) CBSP model.

During minimization, it is also possible to merge

multiple related CBSP artifacts and converge on a

single artifact. The minimal CBSP model thus allows

architects to maintain arbitrarily complex depen-

dencies between a system�s requirements and its ar-

chitecture.

We have developed tool support for identifying and

classifying the architectural relevance of win conditions

as part of the EasyWinWin environment (recall Fig. 1).

The CBSP dimensions are applied in a voting process

involving multiple experts (e.g., software architects, de-

velopers). The experts use the six criteria described above

to classify the architectural relevance of each win condi-

tion as unknown, not relevant, and partially, largely, or
fully relevant. The voting results assist architects in fo-

cusing on the relevant subset of the system requirements.

The bottom pane of Fig. 1 shows a screenshot of the

voting tool. Shaded cells in the figure indicate large dis-

crepancies in votes among the experts and reflect po-

tentially confusing win conditions. These win conditions

must be discussed, and often re-framed, in order to avoid

costly errors and misunderstandings.

4.3. Application to the cargo router example

CBSP bridges the requirements and architecture

models by providing comprehensible views accessible

to both the requirements engineer and the software

architect. Fig. 2 shows an example of the use of CBSP;

it depicts the relationships between partial models
taken from the cargo router case study. The Negotiation

Rationale View shows a set of WinWin artifacts. The
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Fig. 2. Transforming a requirements model into an architectural model using the CBSP model connector (shown in the two middle diagrams). Grey

arrows indicate traceability links between model elements. As discussed further in Section 5.1, an architectural model cannot be directly derived from

a (minimal) CBSP model. However, the intermediate CBSP model maps to an architecture in a more obvious way than does a requirements model.
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Architectural View is a possible architecture for the

cargo router example further discussed in Section 5.

The CBSP model connector comprises two views: the

CBSP View, created by classifying and refining win

conditions, and the Minimal CBSP View, created by

eliminating replaced and merging related CBSP arti-

facts.

In the example shown in Fig. 2, win condition W1
was voted as being fully component relevant, largely bus

relevant, and largely bus property relevant. Win condi-

tions W2 and W4 were voted as being fully bus property

relevant (omitted from the diagram for simplicity) and

largely bus relevant. Finally, W3 was voted as being

largely component relevant. Upon further analysis, it is

revealed that W1 describes multiple architectural ele-

ments. The two middle diagrams in Fig. 2 show the re-
sult of this process: W1 is eventually divided into several

components, a connector, and a connector property in

the minimal CBSP view.
5. Software architecture model connectors

5.1. Modeling software architectures

A minimal CBSP view suggests the key architectural

elements and their properties for an application. How-

ever, it does not provide guidance for achieving an ef-

fective topology of those architectural elements: the S

and SP categories of architectural decisions provide only

hints about the characteristics of the topology. Simi-

larly, in the course of architectural decomposition, the
architect may discover that additional components and

connectors are needed that have not been identified

through requirements elicitation and refinement. For

these reasons, the architectural details suggested by

CBSP must be complemented with architectural design

principles.
There exists a large body of work on arriving at an

effective architecture for a given problem. Architectural

styles (Shaw and Garlan, 1996) provide rules that ex-

ploit recurring structural and interaction patterns across

a class of applications and/or domains. Domain-specific

software architectures (DSSA) and product-line archi-

tectures (Perry, 1998) provide generic, reusable archi-

tectural solutions (reference architectures) for a class
of applications in a single domain and instantiate

those solutions to arrive at a specific application archi-

tecture. Finally, a large body of ADLs and their sup-

porting toolsets (Medvidovic and Taylor, 2000) allow

developers to model, analyze, and implement software

systems.

In our work to date, we have chosen to use archi-

tectural styles as guides in transforming the initial ar-
chitectural decisions produced by the CBSP model

connector into an actual architecture. We have explored

the feasibility of composing CBSP artifacts into an ar-

chitecture according to the Pipe-and-Filter (Shaw and

Garlan, 1996), GenVoca (Batory and O�Malley, 1992),

Weaves (Gorlick and Razouk, 1991), and C2 (Medvi-

dovic et al., 1999) styles. An analysis of the key

requirements for the cargo router system (e.g., scale,
distribution, evolvability, heterogeneity) suggested

Weaves and C2 as suitable styles. Since our software

architecture research is centered around C2 and we had

previously applied C2 in the design and implementation

of a logistics application, it became our primary choice,

as already foreshadowed in Fig. 2.

C2 provides a number of useful rules for high-level

system composition. A C2-style architecture consists of
processing components, buses, and their configurations;

data components are treated implicitly, as attributes

of the processing components� interactions. For exam-

ple, in Fig. 2 Cargo is not explicitly represented in the

C2 architecture. C2 imposes a particular topological

order on the components and buses in an architecture:



N. Medvidovic et al. / The Journal of Systems and Software 68 (2003) 199–215 205
components may interact only via buses and may have

at most one bus on their top and one on their bottom

sides; as a side-effect, topologically adjacent components

may not directly interact. Furthermore, each component

is substrate-independent and may only have knowledge

of the components above it in the architecture.
Based on the dependencies among the elements in the

minimal CBSP view, the rules of the C2 style allow us to

compose them into an architecture. For example, as

shown in Fig. 2, Optimizer depends on Vehicle and

Warehouse; C2�s substrate independence principle

mandates that Optimizer be placed below them in the
CargoRoute

Optimizer

Warehou

ServicesC

ArtistConn

Artist

Clock

ClockCon

Communication

Port

architecture CargoRouteSystem is {
component_types {

component Port is extern {Port.c2;}
component Artist is virtual {}
... }

connector_types {
connector RegConn is {filter no_filter;} }

architectural_topology {
component_instances {

aPort : Port;
Display : Artist; ... }

connector_instances {
ClockConn, ArtistConn : RegConn; ... }

connections {
connector Clock Conn {

top SimClock;
bottom aPort; }

connector ArtistConn {
top Optim, Report, ServicesConn;
bottom Display; }

... } }
}

(a)

(b) (c

Fig. 3. (a) Architectural breakdown of the cargo routing system. (b) Partial ca

component type specified in C2SADEL. ‘‘�’’ denotes the value of a variabl

nality. C2SADEL uses a backslash to distinguish a keyword from an identifi
architecture. Since there are no direct dependencies be-

tween Vehicle and Warehouse, they may be adjacent.

Note that the same dependency relationship would have

different topological implications in a different style. For

example, GenVoca would require Optimizer to be above

the Vehicle and Warehouse components (while still al-
lowing Vehicle and Warehouse to be at the same level).

Furthermore, unlike C2, GenVoca would allow direct

interactions among its components, without the inter-

vening connectors.

The C2 architecture of a subset of the cargo routing

application is shown in Fig. 3a. The Port, Vehicle, and
r

Vehiclese

onn

n

Reporter

Conn

component Port is
subtype CargoRouteEntity (int \and beh) {

state {
cargo : \set Shipment; selected : Integer; ... }

invariant { (cap >= 0) \and (cap <= max_cap); }
interface {

prov ip_selshp: Select(sel : Integer);
req  ir_clktck: ClockTick(); ... }

operations {
prov op_selshp: {

let  num : Integer;
pre  num <= #cargo;
post ~selected = num; }

req or_clktck: {
let  time : STATE_VARIABLE;
post ~time = time + 1; }

... }
map {

ip_selshp -> op_selshp (sel -> num);
ir_clktck -> or_clktck ();
... }

}

)

rgo routing system architecture specified in C2SADEL. (c) Partial port

e after an operation has been performed, while ‘‘#’’ denotes set cardi-

er with the same name (e.g., ‘‘nset’’ versus ‘‘set’’).



Fig. 4. Partial rule set for transforming a C2SADEL model into a UML model. This rule set is implemented by the integration of DRADEL and

Rational Rose.
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Warehouse components maintain the state of the appli-

cation. Optimizer ensures the most efficient distribution

of vehicles at the delivery ports, assignment of cargo to

the vehicles, and routing of vehicles to the warehouses.

CargoRouter tracks the cargo during its delivery to a

warehouse, while Reporter allows progress tracking of

the system by a human operator. SystemClock provides

consistent time measurement to interested components.
Finally, the Artist component renders the application�s
user interface.

C2-style architectures are modeled in an ADL,

C2SADEL (Medvidovic et al., 1999). C2SADEL allows

modeling of component and connector types, which are

then instantiated and composed into a configuration. For

illustration, an excerpt of a C2SADEL model of the

cargo router architecture is shown in Fig. 3b, while a
partial specification of the Port component type is given

in Fig. 3c. Such a specification is analyzed for consistency

by C2�s DRADEL environment (Medvidovic et al., 1999).

5.2. Architecture-to-design model connector

Based on the information provided in a C2SADEL

model of an architecture, DRADEL is capable of gen-
erating a partial implementation of that architecture

(Medvidovic et al., 1999). However, many lower-level

issues needed to complete the implementation (e.g.,

specific data structures and algorithms) are not provided

at the architectural level. For that reason, the ‘‘outer

skeleton’’ of the application generated from the archi-

tectural model must be complemented with the details

typically provided through lower-level design activities.
To ensure the traceability of design-level details to the

architecture and vice versa, we have developed a model

connector that synthesizes a design model from an ADL

model. We selected the Unified Modeling Language

(UML) (Booch et al., 1998) as the target design lan-

guage and conducted an in-depth study of the feasibility

of mapping several ADLs to UML (Medvidovic et al.,

2002). 1 Based on this earlier study, we have imple-
1 A more detailed overview of UML is given in Section 6.
mented a model connector between C2SADEL to UML.

The transformation results in an intermediate model

that is represented in UML, but reflects the structure,

details, and properties of the original architectural

model. 2 The model connector is defined by a set of rules

that ensure that every C2SADEL feature is transferred

into UML. A preliminary attempt at such a rule set

was discussed in Abi-Antoun and Medvidovic (1999).
We have since refined and completed these rules. Ad-

ditionally, we have integrated DRADEL with the

Rational Rose UML modeling environment (Abi-

Antoun and Medvidovic, 1999), allowing fully auto-

mated synthesis of UML models from C2SADEL

architectures.

A small excerpt of the rule set comprising the model

connector between C2SADEL and UML models is
shown in Fig. 4. It indicates that, for example, a C2

component is modeled in UML as a collection of ‘‘ste-

reotyped’’ UML elements (classes, operations, and at-

tributes). Stereo-types are an extension mechanism

provided by UML to enable modeling of constructs

(e.g., �C2-Component�) not originally envisioned by

UML�s designers. As demonstrated in Medvidovic et al.

(2002), the semantics of such constructs are specified
formally using UML�s Object Constraint Language

(OCL), which is based on first-order predicate logic

(Booch et al., 1998).
5.3. Application to the cargo router example

The C2 architecture of the cargo router application is

mapped into several UML diagrams as indicated by the
rules in Fig. 4. Each C2 component and connector is

mapped to a specific set of UML class diagrams, rep-

resenting its internal details as modeled in C2SADEL,

while the overall configuration is mapped to UML

component and object diagrams. Fig. 5 shows the syn-

thesized (partial) UML view of the cargo router archi-
2 We should note that the ADL and UML models are not entirely

isomorphic. Space limitations prevent us from further elaborating on

this issue here. Additional details can be found in Medvidovic et al.

(2002).
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tecture. All the details of the architecture represented

in C2SADEL are transferred into this intermediate

model.
6. Software design model connectors

6.1. Modeling software designs

Our support for software design leverages a large

body of mainstream design notations and methodolo-

gies, collected into the UML (Booch et al., 1998). UML

is a graphical language that provides a useful and ex-

tensible set of predefined constructs, it is semi-formally

defined, and it has substantial (and growing) tool sup-

port. UML allows designers to produce several models
of a software system via the supported diagrams: class,

object, collaboration, package, component, use-case,

statechart, activity, sequence, and deployment diagrams.

As discussed above, UML allows additional semantic

constraints to be placed on its modeling elements via

OCL.

Once the intermediate UML model is synthesized

from the architecture in the manner discussed in Section
5, that model must be further refined to address the

missing lower-level design issues, such as additional

processing and data elements, specific data structures,

and algorithms. This section discusses model connectors

we have developed to bridge related design models (e.g.,

class diagrams) at different levels of abstraction, as well

as different design models (e.g., class and statechart di-

agrams) at the same level of abstraction.
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6.2. Inter-design model connectors

In order to help bridge design models, we have de-

vised a set of design model connectors, accompanied by

a set of activities and techniques for identifying incon-

sistencies among the models in an automatable fashion.
We refer to the model connectors, activities, and tech-

niques as a view integration framework (Egyed, 2000).

The view integration framework identifies and supports

two categories of design model transformations: design

refinement and design view transformations. Design re-

finement involves bridging between higher-level and

lower-level views, while design view transformations

provide bridges among different system views at the
same level of abstraction.

As discussed above, UML supports a wide range of

diagrams to model a system. Our view integration

framework currently encompasses eight transformations

between models expressed in four different UML dia-

grams: class, object, sequence, and statechart diagrams.

Due to space constraints, we will discuss the general

principles of the view integration framework, but will
only focus on the details of transformations across class

and object diagrams.

In our investigation of UML diagrams, we have

identified three major transformational dimensions (see

Fig. 6). Views can be seen as abstract or concrete, generic

or specific, and behavioral or structural (Egyed, 2000).

The abstract–concrete dimension was foreshadowed in

Section 5, where a C2 architecture was the abstract view
and the generated UML model the concrete view. The

generic-specific dimension denotes the generality of

modeling information. For instance, a class diagram

naturally describes a relationship between classes that

must always hold, whereas an object diagram describes a

specific scenario. Finally, the behavior–structure dimen-
statechart
view

object
view

sequence
view

class
view

C2SADEL
view

statechart
view

object
view

sequence
view

class
view

instance

type

behaviorstructure

concrete

abstract

Fig. 6. Design model connectors.
sion takes information about a system�s behavior to

infer its structure. For instance, test scenarios (which are

behavioral) depict interactions between objects (struc-

tural) and may thus be used to infer structure.

Manual management of design model connectors

across these three dimensions is often infeasible due to
the complexity of the models. Two factors contribute to

the complexity: (1) the existence of model elements that

are only relevant to one view, but not to others (e.g.,

‘‘helper’’ classes such as theWarehouseCollection in Fig.

8d), and (2) the large number of interdependencies be-

tween model elements that must be traced and under-

stood (e.g., the grey arrows between elements in the four

models shown in Figs. 2, 5, 8, and 9). In order to control
this complexity, we have developed a tool, UML/Ana-

lyzer (Egyed, 2000), that uses an abstraction technique

to eliminate helper classes. UML/Analyzer searches for

class and object patterns and replaces them with simpler,

more abstract patterns of the same type based on a set of

over 60 rules. An excerpt of UML/Analyzer�s rule set is

shown in Fig. 7.

For instance, to identify a mismatch in the class di-
agram shown in Fig. 8d, we need to eliminate the helper

classes availableGoods and aSurplus that ‘‘obstruct’’ our

view of the relationship between aVehicle and aWare-

house. In this example, UML/Analyzer sees an aggre-

gation from aVehicle to availableGoods, followed by a

generalization (inheritance) from availableGoods to

aSurplus, which is, in turn, followed by an association

from aSurplus to aWarehouse (Fig. 8c). The tool then
uses its abstraction rules to replace the class and rela-

tionship patterns. Further applying our abstraction rules

on the example, we end up finding an association rela-

tionship between aVehicle and aWarehouse (Fig. 8a).

This example is further discussed in Section 6.3.

6.3. Application to the cargo router example

As already discussed, we will focus on the application

of design model connectors to class and object views of

the cargo router system. We use the UML model pro-

duced by the transformation discussed in Section 5 as

our starting point. Fig. 9 shows an excerpt of the con-

sistency checking process in the context of cargo router
Fig. 7. Partial rule set used by UML/Analyzer to simplify class and

object diagrams. These rules have been created in collaboration with

the Rational Software Corporation. Rational also implemented our

abstraction method in a tool called Rose/Architect (Egyed and

Kruchten, 1999).
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Fig. 9. Use of an intermediate model to find a structural inconsistency between architecture and design models.
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(Egyed and Medvidovic, 2000). The figure depicts a

lower-level design (right side) and its intermediate ab-

straction produced by UML/Analyzer in the manner

outlined above (middle). The intermediate model can be

compared more easily with the original model (i.e., ar-

chitecture, shown on the left) to ensure consistency. For

example, the association relationship between CargoR-

outer and Vehicle in the middle diagram is in violation of
the original architecture�s structure since no corre-

sponding link between the two can be found in the C2

architecture (left diagram).

Another potential mismatch between the two models

depicted in Fig. 9 is a result of C2�s rule that two to-

pologically adjacent components (e.g., Vehicle and
Warehouse) are not allowed to directly interact. The

intermediate model again helps to detect that mismatch

as shown in Fig. 8. The object aVehicle is part of avai-

lableGoods, which, in turn, is a child of aSurplus. Since

aSurplus can only access the object aWarehouse (part of

another component), it follows that it is possible for

Vehicle to interact with Warehouse––a violation of the

original architectural model.
7. Properties of model connectors

This paper has presented three classes of model

connectors needed at the ‘‘upstream’’ stages of the
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software lifecycle. Each of the three is different from the

others and, in this paper, they have been applied only on

our own modeling techniques. At the same time, the

model connectors share several characteristics we believe

to be more generally applicable (e.g., they all employ

intermediate models and a combination of synthesis and
analysis). Explicating such characteristics will help

software researchers and practitioners to better under-

stand software model connectors; it will also potentially

help them in developing their own or adapting existing

techniques for bridging software models.

In this section, we discuss several properties of model

connectors we have identified to date. We illustrate each

property with examples drawn from the model connec-
tors discussed earlier in the paper. The properties can be

organized in two major categories:

• Properties relevant to a model connector as a whole.

The identified properties are purpose, directionality,

automatability, and reliability.

• Properties relevant to the relationships between indi-

vidual elements of the involved models. These specify
the nature of traceability links between the elements.

7.1. Purpose

Models are transformed to achieve certain objectives

during development. The transformation purpose de-

scribes the underlying intent behind a model transfor-

mation. Examples of purposes are refinement, mismatch
detection, or the creation of a stakeholder-specific (e.g.,

user) view.

A single model connector often serves several pur-

poses. For example, the main purpose of the CBSP

model connector is the refinement of WinWin require-

ments negotiation artifacts into architectural elements.

CBSP also supports analysis indirectly, by capturing

architectural trade-offs and mismatches revealed in the
process of architectural modeling. Problems detected

during architectural modeling and simulation can be

captured as CBSP architectural decisions, such as

S: Three seconds system response time not possible due

to limited network bandwidth.

7.2. Directionality

We can distinguish between unidirectional and bi-

directional model connectors. Unidirectional connectors

allow transformation in one direction only. For exam-
ple, in Section 6 (Fig. 6) we discussed a unidirectional

connector that allows derivation of a model�s structural

view from its behavioral view. Another common model

connector that is typically unidirectional is compilation:

it is difficult to derive source code from a compiled

image. Another example is CBSP. While it allows feed-
back from architecture modeling to requirements ne-

gotiation via the traceability links it maintains (recall

Fig. 2), CBSP currently does not make any specific

provisions for actually traversing those links, leaving the

task to humans and external tools.

Bi-directional model connectors establish a ‘‘two-way
bridge’’ between two models. An example of a bi-di-

rectional connector is the bridge between C2SADEL

and UML: the mapping between a C2SADEL model

and the UML model initially generated by the trans-

formation discussed in Section 5 is objective.

7.3. Reliability

Reliability describes the degree of confidence in a

model connector. Reliability depends on the rules that

can be established to guide the application of a model

connector. We distinguish between informal, semi-for-

mal, and formal rules. While model connectors in the

later stages of the lifecycle (e.g., compilation) are typi-

cally based on formal rules, connectors that are em-

ployed early in the process (e.g., CBSP) depend on
heuristics.

For example, transforming a requirements model

into an architecture model is heavily influenced by the

ambiguity and imprecision of natural language and

cannot be considered highly reliable. We have tried to

mitigate that in CBSP via guided, expert-based refine-

ments of negotiation results and guidelines for analyzing

the vote spread of the experts (recall discussion of Fig.
1). The higher degree of formalization of architectural

and design models typically renders a model connector

between them more reliable. At the same time, in our

particular approach to bridging architectures and de-

signs, we faced the problem that several aspects of UML

semantics remain informal. DRADEL, Medvidovic et

al. (1999) has tried to address this issue by placing for-

mal constraints, specified in OCL, on UML modeling
elements (recall Section 5).

7.4. Automation

This property describes the degree to which tools

support the rules guiding a model connector. We dis-

tinguish between manual, semi-automated, and fully

automated support.

To a large extent, the degree of automation depends

upon the level of formality of the involved models. For

example, the derivation of CBSP artifacts from (infor-

mal) requirements is semi-automated using EasyWin-
Win. On the other hand, the comparatively higher

degree of design formalization allows one to build fully

automated model connectors between design models.

For example, UML/Analyzer (Egyed, 2000) automati-

cally synthesizes intermediate models during a trans-

formation. These intermediate models are then used to
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detect structural and behavioral inconsistencies by em-

ploying automated comparison (i.e., analysis) tech-

niques. As it can be seen in the context of Fig. 8, a series

of intermediate models may be generated by a single

model connector.

7.5. Element relationship properties

The properties discussed thus far characterized model

connectors as a whole. We now turn our attention to
properties of the relationships between individual ele-

ments of different models.

7.5.1. Qualifier

Elements from two models related by a model con-

nector can be unrelated, complementary, redundant, or

contradictory. Model connectors use various mecha-

nisms to identify and/or make use of these types of re-
lationships, as indicated by the following examples.

• Unrelated: If no relationship is established between

two model elements by a model connector, we regard

these elements as unrelated. This happens if certain

elements of the source model are not refined or the

target model deals with different concerns. For exam-

ple, the CBSP voting process emphasizes architec-
tural relevance, helping the architect to focus on the

most relevant subset of the negotiation results and

to ignore unrelated artifacts (e.g., a development

schedule win condition may have no bearing on a

component property CBSP artifact).

• Complementary: If a model element completes infor-

mation provided by another model element we de-

note that relationship as complementary. For
example, the services a C2 component requires are ex-

plicit, first-class constructs in C2SADEL and are used

as the basis of architectural analysis. In the UML

model, these services become a part of system docu-

mentation, intended as a guide to the designer.

• Redundant: A single model element is often used in

multiple models. Relationships among different oc-

currences of such an element can be qualified as re-
dundant. For example, VehicleComponent is

represented in the architecture diagram, as well as

the object and component UML diagrams in Fig. 5.

Such redundancy is unavoidable when a model con-

nector�s source and target models have overlapping

concerns. At the same time, the redundancy presents

a problem in that changes in one such view must al-

ways be propagated to all other views.
• Contradictory: The relationship of two or more ele-

ments is contradictory if it is impossible for (some

subset of) the model properties that depend upon

the elements to be valid simultaneously. For example,

the architectural model in Fig. 9 indicates that no in-

teraction relationship may exist between Vehicle and
CargoRouter, which is contradicted by the design

model.

7.5.2. Cardinality

In addition to the qualifier, the cardinality of the

relationship between model elements has to be identi-
fied. We can distinguish the following relationships.

Examples of each relationship can be found in Fig. 2.

• Transmute: One element of the source model is re-

lated to exactly one element in the destination model.

An example is a win condition that is related to ex-

actly one component in an architecture.

• Diverge: One element of the source model relates to
multiple elements in the destination model. An exam-

ple is a win condition that is refined into a component

and a connector in an architecture.

• Converge: Multiple elements of the source model are

related to one element in the destination model. Ex-

amples are several win conditions that converge into

one component in an architecture.

7.6. Summary

The table shows the model connectors discussed in

Sections 4.2, 5.2, and 6.2, together with their properties

presented in this Section 2 and revisited above. De-

scribing model connectors in such a way serves several

purposes:

1. it helps to better understand existing software devel-

opment methodologies by characterizing the transi-

tions between the various modeling approaches used,

2. it assists in identifying ‘‘missing links’’ inside method-

ologies, and

3. provides a roadmap for methodology developers who

want to improve their approaches or need to adapt a

methodology to specific needs (automation, high reli-
ability, and so on).
8. Related work

The work described in this paper is related to several

areas of research covering requirements, architecture,

and design modeling and transformation. Our model

connector between requirements and architectures was

applied to WinWin, an example of a class of techniques

that focus on capturing requirements, their tradeoffs,

and their refinements in a structured, but not always
formal manner (Chung et al., 1999; Dardenne et al.,

1993; Kazman et al., 1999; Mullery, 1979; Robertson

and Robertson, 1999). For this reason, even though we

have developed and applied our CBSP approach spe-

cifically in the context of WinWin, we believe CBSP to

be more generally applicable.
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The refinement of requirements into architecture and

design is often discussed in the context of requirements

capture. Generally, those discussions focus on processes

(e.g., Robertson and Robertson, 1999), but not autom-

atable techniques. Our work on refining requirements

extends such a process with a structured transformation
technique and tool support. A handful of other ap-

proaches exist that, at least in principle, also enable

automated refinement of requirements. However, those

approaches are predicated on a more formal treatment

of requirements artifacts (e.g., Nuseibeh et al., 1994)

than a technique such as WinWin would allow.

A key issue in transforming requirements into archi-

tecture and design is effectively tracing development
decisions across modeling artifacts. Researchers have

recognized the difficulties in capturing such traces

(Gieszl, 1992; Gotel and Finkelstein, 1994). Gotel and

Finkelstein (1994) suggest a formal approach for en-

suring the traceability of requirements during develop-

ment. Our approach is less formal, but captures

extensive trace information throughout the development

process, thus satisfying many of the traceability needs
defined in Gieszl (1992) and Gotel and Finkelstein

(1994).

Software architecture researchers have studied the

issue of refining an architecture into a design. An ap-

proach representative of the state-of-the-art in this area

is SADL (Moriconi et al., 1995). SADL incrementally

transforms an architecture across levels of abstraction

using a series of refinement maps, which must satisfy a
correctness-preserving criterion. While powerful, this

transformation technique can be overly stringent (Gar-

lan, 1996). It sacrifices design flexibility to a notion of

(absolute) correctness. Furthermore, formally proving

the relative correctness of architectures at different re-

finement levels may prove impractical for large archi-

tectures and numbers of levels.

Different elements of our model connectors between
architectural and UML models can be found in existing

work. Cheng et al. (1995) enable transformations by

converting models into a formal environment (e.g., al-

gebraic specification) to allow precise reasoning. Like-

wise, our approach, defines C2 architectures in UML via

formal OCL constraints to allow precise reasoning. Al-

though a formal approach to transformation has a

number of advantages, we have found that it is not al-
ways suitable or practical. Several of our design model

connectors are therefore based on diagrammatic trans-

formations of UML analogous to Khriss et al. (1998)

and Koskimies et al. (1998). In fact, we adopted as one

of our inter-design model connectors the approach for

transforming sequence diagrams to statecharts intro-

duced by Koskimies et al. (1998).

The work described in this paper also relates to the
field of transformational programming (Bauer et al.,

1989; Liu et al., 1992; Partsch and Steinbruggen, 1983).
The main differences between transformational pro-

gramming and model connectors are in their degrees of

automation and scale. Transformational programming

is fully automated, though its applicability has been

demonstrated primarily on small, well defined problems

(Partsch and Steinbruggen, 1983). Our approach, on the
other hand, can be characterized only as semi-auto-

mated; however, we have applied it on larger problems

and a more heterogeneous set of models, representative

of real development situations.
9. Discussion and conclusion

In this paper, we have discussed a set of model con-

nectors whose ultimate goal is to facilitate the consistent

transformation of a system�s requirements into its im-

plementation. We believe that this is an important

contribution in that our approach provides some novel

solutions to a difficult problem, studied extensively by

software engineering researchers. For example, the

CBSP model connector provides a good balance of the
structure and flexibility needed to address the problem

of deriving an effective architecture from a system�s re-

quirements. System quality requirements in particular

tend to drive the choice of architecture (Kazman et al.,

1999); at the same time, the ‘‘optimal’’ architecture if

often a discontinuous function of the required quality

level. Highly formal approaches are typically unable to

adequately deal with this discontinuity, while the col-
laborative CBSP approach can handle it more readily.

CBSP addresses the issue by involving experts in a

voting process to determine the architectural relevance

of negotiation artifacts and to identify incomplete and

inconsistent requirements.

Another contribution of this paper lies in its identi-

fication of a set of underlying principles needed to en-

able a series of model connectors: all connectors
discussed in this paper rely on the use of intermediate

models, the coupling of analysis and synthesis of varying

degrees of automation, and a set of shared properties

(recall Section 7). While we have developed and applied

these principles in the context of specific require-

ments, architecture, and design modeling approaches,

we have taken special care to ensure their broader ap-

plicability. Thus, for example, the CBSP approach does
not depend on the use of WinWin, but can instead be

applied to a wide range of requirements model artifacts.

Similarly, we have already applied our ADL-to-UML

model connector to several ADLs (Medvidovic et al.,

2002). Other well understood software model connec-

tors also appear to adhere to these principles. For ex-

ample, compilation is a fully automated, typically

unidirectional, highly reliable synthesis model connec-
tor whose intermediate models include abstract syntax

trees.
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Our work in this arena continues along several di-

mensions. The MBASE approach and its support for

multiple model categories is used as the conceptual in-

tegration platform for this work. We also integrating the

tool support provided by EasyWinWin, DRADEL, and

UML/Analyzer to facilitate easier development and
implementation of model connectors; we intend to le-

verage all three tools� existing interfaces to Rational

Rose to this end. We are also investigating additional

model connectors that will, in particular, allow the use

of multiple ADLs to enable architectural modeling of

different system characteristics. Finally, we are exploring

the suitability of open hypertext engines (Anderson,

1999) for automatically maintaining the numerous
traceability links produced by our model connectors, a

task our work to date has not supported.
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